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Let us examine the point of intersection of n, and 5~ (V, VO). Corresponding to the 
possible shock crossings will be those points J;l/l, of the intersection of n, and on@, 

VO) for motion to which along the ray from :If, there are no points of QH to the left of 
the ray. Furthermore, if M lies in the shear plasticity domain with compression, then 
the condition Y (M) < 0 should be satisfied, where the calculations should be carried 
out for shear elasticity. If this condition is satisfied, then the shock crossing is unique. 

In particular, it is satisfied if (6) is satisfied. If Y (M) > 0 for shear elasticity, then 
a shock crossing of the same intensity is possible with the change in the character of the 
shear strain. This shock crossing can only be by a rarefaction shock crossing. To seek 
the state which is final, a branch of the curve 3~ [v, 2, (M)] corresponding to rarefac- 

tion can be constructed on the 5 - v plane. Its point of intersection with the ray nII, 

corresponds to the final state of the second shock crossing. 

The author is grateful to S, S. Grigorian for supervising the research and to G. Ia. Galin 
for useful discussion. 
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The tensor stress concentration coefficient connecting the stress on the boundary 
of an inhomogeneity in an anisotropic elastic medium with the external field is 

represented as the product of two factors. The first is universal for any inhomo- 
geneity and depends on the elastic constants of the medium and the inhomo- 
geneity, and on the normal to the surface. Its construction reduces to an algeb- 
raic operation of inverting a third-order matrix. The second factor is a constant 
tensor in the ellipsoid case, which is expressed in terms of the mean value of the 

first factor over the surface of the ellipsoid. Explicit formulas are obtained from 
the homogeneous and linear external fields. The cases of a cavity and rigid in- 
clusion are examined separately. For an arbitrary polynomial field the problem 
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reduces to solving a finite system of linear algebraic equations. An investiga- 
tion of the expressions obtained is simplified substantially by the fact that the 
ellipsoid parameters enter only in the scalar factor under the integral. 

The stresses at an ellipsoidal cavity [l-4] and on an ellipsoidal inhomoge- 
neity [5] in a homogeneous external field have been investigated under the as- 
sumption of isotropy of the external elastic medium. A spheroidal cavity in a 

transversally isotropic medium has been examined in [S]. Some general consi- 

derations about the case of an anisotropic medium are contained in [7]. The 

problem of an ellipsoid in an isotropic medium in an external linear field has 
been reduced in [S] to systems of algebraic equations but their solution has not 

been obtained. Stresses outside the ellipsoidal inhomogeneity have been exam- 
ined in all these papers. and the passage to the surface was accomplished only 
at characteristic points (vertices of the ellipsoid). 

1. The problem of stress concentration on the surface of an ellipsoidal inhomogen- 
eity in an anisotropic medium in an external polynomial field is solved. The purpose 
of the paper is to represent the limit value, from outside, of the stress tensor d_ on the 
boundary s of the ellipsoidal inhomogeneity as 

(1.1) 

Here 6, is the external polynomial field, F (n) is an operator concentration coeffici- 
ent, and n is the normal to s. 

It is convenient to construct the operator F (n) in two steps. First we find the rela- 
tionship 

5”_” (n) = Bapp+ (n) & (n) (1.2) 

connecting 5_ (n) with the value of the strain ef (n) within the inhomogeneity at the 
same boundary point. The relationship is valid for an inhomogeneity of arbitrary shape, 
and the calculation of the tensor coefficient B (n) which depends on the normal and 

the elastic characteristics of the inhomogeneity and the external medium, reduces to 

algebraic operations. The corresponding problem of two joined media, which might also 
be of independent interest, is solved in Sect. 2. 

In the next step (Sect. 3). an operator B-l is constructed which transforms the exter- 
nal field 0, into a field E+ within the inhomogeneity 

(1.3) 

Here the property of polynomial conservativity of an ellipsoidal domain [9] is substan- 
tially used. The operator B -’ hence turns out to be a functional of the coefficient 

B (n) (which explains the choice of notation). 
Explicit expressions are found in Sect. 4 for the operator concentration coefficient 

(1.4) 

for the most important cases of homogeneous and linear external fields, and its nontri- 
vial properties are established. The calculation for an arbitrary external polynomial 

field reduces to quadratures and the solution of a finite system of linear algebraic equa- 
tions. The limit cases of a cavity and a rigid inclusion are examined. 

Specific computations of the concentration coefficient components are carried out 
in Sect. 5 for some particular cases of anisotropy. 
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2. Let us consider the problem of two joined media with the elastic moduli tensors 
&:ii.i* and ,--q)'(*_ Considering the customary conditions of continuity of the displace- 
ment and the normal stress vector to be satisfied on a (sufficiently smooth) interface s 

+ 
Un = n7. , n+_ -33 = n&P (2.1) 

we find an expression for the jump in stress or strain at some point of the boundary S. 
The continuity of the tangential component of the tensor Vu on s follows from the 

continuity of u on 8. Introducing the projection operator 

n,g = &T+?,, tizB = 6,~ - nnnp (2.2) 

we write this condition as 
fi ,.PdpUI*- = 0 ,.papu;L+ (2.3) 

Let us transform the second of the conditions (2.1). We have B = CE = cVu, where 
replacement of E by Vu is possible because of the symmetry of the elastic moduli 
tensor. Decomposing Vu- into the sum of normal and tangential components, we find 

yl,c’p”Y n[,PJ,u,- + nac_J+f +JvQd,u,- _- n,f$P7 a,~,+ (2.4) 

Using (2.3) we obtain an equation in n. Vu- 

/,? (n) nPdpzl,- = L!? (n) nPd,u,+ + n, [c”“pT] &a++ (2.5) 

where 

L!? (n) = cylivy n,n,, ,pPy = $PT _ p’ (2.6) 

Applying the matrix G- (n) the inverse of matrix L_ (n) to both sides of (2.5) (the 

matrix G-(n) exists because of the positive-definiteness of the elastic energy), we solve 
(2.5) for n. Vu-. Then, tensor multiplication of the result by n yields 

n),Pdp!L;*- = X-/,+3pI++ + n,,.GFB (n) n, [ c”~‘~‘] 8pu.,+ (2.7) 

Combining with (2.3) and symmetrizing with respect to the subscripts $I,, we have 

[c,.,L] = $;A - F& = - K&, [c"""] ~,'r = - K;p"q [PPT] F& (2.8) 

K&n (n) = [n>.Gi& (n)n,](hy) cvn) (2.9) 

The parentheses indicate symmetrization with respect to the appropriate subscripts. 
From (2. 8) we also obtain an expression for the jump in the stress [a] on S and the 

desired relationship (1.2). Henceforth, the minus and plus signs will refer, respectively, 
to the external medium and the inhomogeneity with the elastic moduli tensors co and 

co + Cl. We then have from the second equality in (2.6) and (2.8) for the coefficient 

(2.10) 

Here the tensor K, (n) is connected to the tensor G, (n) = Lo-m1 (n) by means of 

(2.9). In turn, L, (n) is defined by the first equality of (2.6) in which C_ should be 
replaced by cO. 

The connection of G, (II) to the Green’s tensor G, (x) of an infinite homogeneous 
medium is of essential value for the sequel. Let Go (k) be the Fourier transform of the 
Green’s tensor G, (x) (see [lo], for example). It can then be said that G, (n) agrees 
with the value of G, (k) on the unit sphere 1 k ( = 1, i.e. for n = k / ( k (. In 
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the case of an isotropic medium (with Lame coefficients h,, pO) G, (II) and K,, (n) 
have the simplest form. In particular 

Let us also present formulas for the strain jump [E] on the interface between two 

isotropic media for the case when the x3- axis coincides with the normal 11 

(2.1’) 

Let us note that in this most simple case the formulas for [E] can be obtained directly 
by using obvious reasoning. It follows from the first condition of (2.1) , as has already 
been mentioned above, that the tangential component of the tensor Cu is continuous. 

In the coordinate system selected this means the continuity of the six components d,up 

with the subscripts lfl and ZJ!i , and consequently, the three strain components &it. c,~ 
and ~a? . 

The continuity of the three stress components ~~3, 0”s and 033 results from the sec- 
ond condition of (2.1). Using the conditions obtained for (5 and e as well as Hooke’s 
law for an isotropic medium, we find expressions (2.12) for [E] and also analogous for- 

mulas for [ol. 
Note. Relationships for the stress and strain jumps are a result of the matching con- 

ditions (2. l), but they are not equivalent since they are satisfied under weaker assump- 

tions. In particular, the component ti3 can have a jump on the interface for the consi- 
dered case of isotropic media. 

3. Let us turn to the fundamental problem of constructing the operator B-l in (1.3). 

We consider an unbounded medium with the elastic moduli tensor o (x) = c,, +, c,v (x), 

where x (xl, x2, x”) is a point of the medium, c, and cl are constant tensors, and 

T/ (x) is a characteristic function of the ellipsoid (equal to unity within and zero out- 
side the ellipsoid). The Cartesian coordinate system is connected to the ellipsoid semi- 

axes ax (a = 1, 2, 3) given by the equation (*) 

s@x := XX (@jl,>.“~ 1, ()1:i 1 &j”” (3.1) 

The stresses or displacements at infinity and (nonzero in the general case) external for- 

ces q (x) are considered known. The equation for the displacement u (x) is 

--d,, [CQ).:” (x) dhU!A (x)1 = 4% (x) (3.‘) 

or in compact notation 

IA = q, L 7 - rcc (3.3) 

Understood in the sense of generalized functions, this equation will automatically assure 
compliance with the matching conditions (2.2) on the boundary S of the ellipsoidal 

inhomogeneity if it is assumed that q has no single or double layer type singularity on 

S 

l ) Here and henceforth, summation is not carried out over identical super-(or sub)scripts. 
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It is henceforth expedient to reduce the problem to an integral equation. Let us set 

u (x) = u. (x) + u1 (x), where u0 (x) is the external field, i.e. the field which 
would exist in a homogeneous medium (cl = 0) for given external forces q (x) and 

conditions at infinity, and u1 (x) is the perturbation caused by the inhomogeneity. Then 
uI (x) satisfies the equation 

&l-t &) u1= - Ll%, L, = - Gc,V, L1= - Tc,C (3.4) 

since Lou, = g. Evidently ur (x) --t 0 as x --f 00. The right side of the equation for 

Ui has a simple layer type singularity on S . It follows from potential theory that ut is 
continuous in this case, and ei = def ui (def is the strain operator) has a jump on S 
which assures the continuity of the normal stress vector. 

Let G, = Low1 be rhe Green’s operator of a homogeneous medium whose kernel is 
the Green’s tensor Gag (x)1 Applying the operator def G, to both sides of (3.4) and 
taking account of the symmetry of the tensors c0 and c 1, we obtain an integral equation 
in E (x) = E, (X) + E, (x) 

E + K&E = E,, K, = -def G,def (3.5) 

Here the integral operator K, has the kernel 

I(&,. (s - x’) = - [d&G;:,. (x - x1)1(19) (,.i*) (3.6) 

Equation (3.5) is equivalent to (3.4) and because of the piecewise continuity of E can 
be written as a system &+ + K,+C,F,+ = &o+ (3.7) 

&- == g,- - K&i&+ (3.8) 

Here K,+ = VK,V is the contraction of the operator K, in the ellipsoidal domain 
v. The first equation defines the strain E+ within, and the second the continuation of 
the solution on the complement to V. The existence and uniqueness of the solution 
(3.7) follow directly from the existence and uniqueness of the solution of the equivalent 
equation (3.4) from which follows the existence of the operator 

B-1 := (,- -0 -c c,K,+c,)-l (3.9) 
The possibility of an explicit constructionofthe operator B-1 for the ellipsoidal domain 
V is based on the fact that it possesses the property of polynomial conservativity (the p- 

property); if the external field o0 (x, in the neighborhood of V is a polynomial, then 
the field E+ (x) induced within V is a polynomial of the same degree. For the particu- 

lar case of a homogeneous external field this property is proved in [5, 71, and in the ge- 
neral case in [9]. It is shown in [9] that the calculation of e+ for an arbitrary external 
polynomial field reduces to quadratures and to the solution of a finite system of linear 
algebraic equations. 

According to the p -property, the external homogeneous field o0 induces a homogene- 

ous field F+ within V and consequently, the operator Be1 is a constant quadrivalent 
tensor in this case, which we denote by Bom1, i. e. 

o0 ~: Bog+ (3.10) 

In order to find B,. 
that E,‘, E+ 

let us integrate (3.7) over the domain v. Taking into account 
and et are constant tensors, and denoting the volume of the ellipsoid by 

v , we have 
(3.11) 
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To evaluate the integral entering here, let us make the change of variable x = ny. 
where the matrix a is given by (3.1). Then 

ii V(x) V (x’) K, (x - x’) dxdx’ = j (let II I2 {j V (ny) V (ay’) K, [(I (y - y’)] dydy’ 

Using the Parseval formula, let us reduce the double integral to a single one 

\\; V’ (y) V’ (y’) K,’ (y - y’) dydy’ = &i V” (k) A-,,’ (k) dk (3. t 2) 

where V’ (k; ‘and K,’ (k) are the Fourier transforms I;’ (y) = V (as) and K,’ ( y) = 
ii0 (ay). Since V’ (y) is the characteristic function or a unit sphere, its Fourier trans- 
form v (k) depends only on ( k(. By direct calculation we find 

V’ (k) = & (sin 1 k 1 - 1 k 1 cos 1 k I) (3.13) 

The function K,’ (y) is homogeneous of zero degree, and therefore, Ko’ (k) depends 
only on the unit vector o = k / 1 k 1 

K,,’ (k) = 1 det a IelK, (a-lk) = 1 det u ImlKo (a-“~) (3.14) 

This permits separate integration over 1 k 1 and over o in (3.12). By virtue of the ho- 

mogeneity of K, (k) , we have for the integral over the unit sphere 

\ K, (a-lo) do =: \ K,, (&) do = 1 det a 1 [ iYo (n) p3 (n) dn (3.15) 
. 

(3.16) 

Let us introduce some notation. Let f be a function given on the ellipsoid S. A point 
x of the ellipsoid and the normal n to it are connected by the relationships 

a”11 a-2 

x-z,1 n p7 ,&q (3.17) 

and, therefore, f can be considered as a function of the normal II. We define the mean 
value of f (n) by the expression 

(f(n)) =ym ‘ylf(n)03(n)dn (S. 18) 

where p (n) is given by (3.16). 
The desired tensor B, connecting o, and e+ in (3.10) can then be represented as the 

mean value of the tensor B (n) over the ellipsoid, determined by the matching prob- 
lem. Indeed, by multiplying (3.11) on the left by c0 and integrating taking account of 

(3.12),(3.13),(3.15) and (3.18). we finally find 
1?7.11 R,, =.: < B”““lL (n)) (X20) 

Here cr --= --co and c1 + 03 correspond to the limit cases of a cavity and rigid in- 
clusion. It can be shown that B,,-l exists for b$h these cases. 

Now, let the external field be linear, i.e. od = dQ”‘s,. On the basis of the p- 

property Qj + (x) is a linear homogeneous function elm+ (x) -: b,:,.,~‘. In this case the 
operator E’ reduces to a constant hexavalent tensor connecting the constant tensors 

0 and d (symmetric on the first pair of indices). It is convenient to represent this rela- 
tion as 
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z,.p: u = 3B;-' (uZ),&,~, (3.20) 

To find B, we perform tensor multiplication of (3.7) by x and integration over v. 
Calculations analogous to those carried out above for the homogeneous field yield 

GsnhElr _- (p (n) n~Bt’i~tL (n) n’p (n)) (3.21) 

Evidently the tensor B, is symmetric within each pair of superscriptsa/3, hp., T~‘c. 
Comparison of (3.19) with (3.21) shows that B, and B, can be interpreted as corre- 

sponding moments of B tn). 
Let US note that in contrast to the case of a homogeneous external field, the passage 

to a cavity requires some care in the inversion of the tensor B,. This is related to the 
formal existence of external linear fields o,, (x) (which do not satisfy the equilibrium 

condition div c = 0), which are not perturbed by the inhomogeneity. In the case of a 

cavity the tensor ~i-1 exists only in a subspace not including such fields. No detailed 
investigation of this question is made here. If co (x) is polynomial of higher degree, then 
the properties of the operator Kc+ examined in [9] permit the finding of linear recur- 

rent algebraic relations from the integral equation (3.7). which would relate the coeffi- 
cients of the polynomials n, (x) and F+ (x), and the construction of an explicit expres- 

sion for the operator B , analogously to the cases presented above. 

4. The operator concentration coefficient F (n) is defined by the relationship (1.1) 
and in conformity with (1.4) is expressed in terms of the tensor B (n) and the operator 
B-l. 

Let the external field be homogeneous. Then,as has been shown above, the operator 
B-i in (1.4) agrees with the constant tensor Bowl and the concentrations coefficient 

F, (n) to the quadrivalent tensor 

F$.)., (n) = B”‘“’ (n) IB (n))i:,+ (4.1) 

This representation is especially convenient for the investigation of the dependence of 

the concentration coefficient on the shape of the ellipsoid. Indeed, the local dependence 
of F, (n) on the normal to the ellipsoid (or equivalently, on the point) is given by the 

first factor B (n), which is independent of the ellipsoid parameters and always remains 
finite. The second factor B,-l, which has a singularity in the case of the passage to 
the limit to the crack, yields a fundamental contribution to the stress concentration. 

It follows from (3.18) and (3.19) that the whole dependence of B, on the ellipsoid 
parameters is concentrated in the scalar weight factor p (n). This circumstance is quite 
essential since it permits a complete investigation of the stress concentration in the 
limit cases of an ellipsoidal crack and a needle for an arbitrary anisotropic medium by 

a series expansion of g (n) in a small parameter. 
A curious relationship holds for the mean values (F, (n)) and (o_ (n)) . We find 

from (3.19) and (4.1) 
(F, (n)) G= 1, (4.2) 

where I, is a unit quadrivalent tensor. It then follows from (1.1) that 

co- (n)) = 5, 

It is necessary to set cl + 00 for a rigid inclusion. In the limit we have 

F, (n) = 0, (n) (c&, (n>>-l 

(4.3) 
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let us examine the linear external field CT”‘.!* (x) = G?~:*~&. It can be shown that 

d*l”’ = 3(00”‘“. (n) n’P (n>>. Then taking account of (1.2) (3.20) and (3.21), as well 
as the connection (3.14) between x and n on the boundary of the ellipsoid, we find 

59 (n) = p(n) nYF~?yipT (n) (57 (n) !n+p (n)) (4.4) 

F?.‘,A~~ (n) = BapxP(n) (p (n) nB (n) np (n))&hp 

In particular, for a rigid inclusion 

Z*“t (n) = c&, (n) (p (n) nroKo (n) np (n))-’ 

For the mean values (p (n) nP’, (n) np (n)> and (o_ (n) up (n)) there are valid for- 
mulas analogous to (4.2) and (4.3). In conformity with (4.4) we have 

(o (n) nFi (10 rro (n)> = 1, 

(5-(n) np (n)> = (zO (n) rtp (n)> 

where I1 is a unit hexavalent tensor. 

6. As an illustration, let us calculate the concentration coefficient F, (n) for an 
ellipsoidal cavity in an external homogeneous field. Let us examine the simplest case 
of anisotropy which is obtained by tension along the three axes of an ellipsoid, i. e, 

Here v is the Poisson’s rati,p = h2’ 

ha” = h”6”” (5.1) 

Let i perform the coordinate transformation setting x’ = h-lx. Then the tensor of 
the elastic constants co’ will agree with the isotropic tensor, and the equation of the 
ellipsoid becomes Xfb-2Xf _ 1, b-2 = ha-211 

Thus, it is sufficient to calculate the concentration coefficient F,’ (n’) for an isotropic 
medium. The components of F, (n) are related to the components of F,’ (n’) by 

means of 
Ft?. ,+ (n) = $$ F~!A, (hnp (n)) 

let us turn to the calculation of F,‘) (If’) and let us henceforth omit the primes. Accor- 

ding to (4.1). F, (n) consists of two factors. The first, the tensor B (n), depends on 
the normal to the ellipsoid and is defined by (2.10) in which should be set cl ==- -co. 

for a cavity. Substituting (2.11) into (2.10) and using the expression for an isotropic 
tensor of the elastic moduli (which agrees with (5.1)), we find when g’:’ is replaced 
bv 6’lfi (X, == 211, / 1 - Vo) 

B”““’ (n) _ lcg [v,pQo5 _ lllIL:‘gT _ n,OnT (cp) 1 1 i”” @““(y’ ,_ jia-SQ _ 

nun0 @’ - ,~“,Zf(p - yfnofy= _ ,~,y) + ILxlly,~T] 

It is seen that B (II) has the symmetry co, i.e. is symmetric within the pairs and in 
commutation of the pairs of indices (in the general case of an inhomogeneous inclusion 
there is no symmetry in the commutation of pairs). As a result the second member in 
F. (n), the constant tensor B,,-l , has the symmetry c,,. To calculate it the tensor U, 
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given by (3.18) and having the structure of an orthorhombic tensor with nine nonzero 
essential components should be inverted. Direct calculations yield 

& 1111 :_ X 
'0 [I - & (3111 + II)] (5.2) 

B Y2 = x0 {% - & [I12 + 12, - (1 - 4%) (I, t- Ml} 

B;“12 ~ xo ’ ;! “’ 

3 Y 
m 

Ip = 2 v s 
% 

(6$ + E) a (5) ' I,, = + vbp2 i dE 
($3 -t 4) W+ E) A (5) 

0 0 

The integrals I,, I,, are expressed in terms of elliptic integrals of the first and second 
kind. The remaining six linearly independent components of the tensor B, are obtained 

from (5.2) by a cyclic replacement of the superscripts 1, 2, 3. In the particular case of 
an ellipsoid of revolution (b, = b,) only six essential components remain in the tensor 

B. and the elliptic integrals vanish 

1111 
Bo = ; (3 + 2fl + 3f2), Br3’ = ?co (1 - 2fl f f2) 

1122 (5.3) 
RII :- $ [1 - 2 (1 - 4v,)f, f f,], B:33 =? [Y,, + (1 - v,Jfl - fP] 

1212 BO = ; [I f 2 (1 - h,,) fl + fa], BP’ = t [I - vg + (1 + VO)fl - 2f2] 

fl z -!-.- a 
1 - 22 (1 _ t12)Ji2 arcsin 1/l - x2 

As is customary, in order to evaluate B,-l we represent the quadrivalent tensor B, 
as a sixth order matrix decomposed into two blocks of third order matrices. The com- 
ponents BkhC1” form a symmetric matrix, and the doubled members Bt’.“‘” (h # p) 
- a diagonal matrix, and consequently 

(5.4) 

Let us examine two cases. 
1. The external field oOai3 

diagonal components oi” 
1s tension along the coordinate axes, i.e. only the 

are nonzero. Then the stress concentration is defined by the 
components 

FG.‘? ,,). (n) = BZ511 (n) (B~‘)l,~,~. + B”” (n) (Bi?)22~.~. f Bzp3’ (n) (B&3~~, 

2. The external field 00%~ is pure shear. The stress concentration is determined 

by the components F;o”‘I.. L!,, (n) for h # EL, for which we have according to (4.1) and 

(5.3) 

(5.5) 
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Thus, an investigation of the stress concentration in this case is considerably simpler 
than in the preceding case. 

A comparison with the stress concentration coefficients at the vertex of an ellipsoid, 

obtained in [2], shows that the corresponding components from (5.5) yield the same va- 
lues at these points. It is however essential that knowledge of the concentration coeffi- 
cient just at the vertices of the ellipsoid is not sufficient since it can result in incorrect 
qualitative deductions. For example, for pure shear with the components o,,‘:’ at the 

vertex (1, 0, 0) the stress tensor o_ aJ equals zero, but there is a stress concentration in 

direct proximity to this vertex. Hence, a complete investigation of the stresses on the 

whole ellipsoid surface is necessary, and not only at its characteristic points. 

1. 
2. 

3. 

4. 
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